
1

PLCLogix

User Guide

2

Table of Contents

Chapter 1: Welcome to PLCLogix
1-1 Introduction 3
1-2 Graphic User Interface (GUI) 4
1-3 Controller Organizer 6
1-4 I/O Chassis 8

Chapter 2: Tags and Aliases
2-1 Introduction to Tags 10
2-2 Alias Tags 12
2-3 Creating Tags 13

Chapter 3: Instruction Set
3-1 Introduction 14
3-2 Bit Instructions 14
3-3 Timer and Counter Instructions 15
3-4 Program Control Instructions 16
3-5 Compare Instructions 17
3-6 Math Instructions 18
3-7 Advanced Math Instructions 19
3-8 Data Handling/Transfer Instructions 20
3-9 Array Shift Instructions 21
3-10 Sequencer Instructions 22
3-11 Communication Instructions 22

Chapter 4: Ladder Logic Tutorials
4-1 Tags and Aliases tutorial 23
4-2 Ladder logic tutorial 24
4-3 Branching tutorial 25

3

Chapter 1: Welcome to PLCLogix

1-1 Introduction

PLCLogix is a Programmable Logic Controller (PLC) simulator that emulates the operation of a
ControlLogix controller and RSLogix 5000 software. PLCLogix is an ideal tool for learning the
fundamentals of ladder logic programming. It will allow you to practice and develop your
programming skills using the industry-standard RSLogix 5000 PLC programming software. It
provides users with the ability to write, edit and debug programs written using a tag-based
format. RSLogix 5000 uses tags, which is a powerful method of programming PLCs but also
more complex. PLCLogix provides an interactive approach to learning and understanding the
operation of a sophisticated tag-based PLC in a realistic simulated manufacturing environment.
Figure 1-1 shows an example of a PLCLogix circuit.

FIGURE 1-1 PLCLogix elements.

4

One of the main advantages of using PLCLogix is that it enables you to gain “hands on”
experience in the operation of the Logix 5000 PLC. By using PLCLogix, you are able to gain
much-needed programming practice by creating and running your own ladder logic programs
using tag-based memory. The integration of the ladder programs with the 3D “worlds” provides
a unique opportunity for programming in real-time and observing the operation of complex
control devices and systems.

PLCLogix functionality includes a graphical controller organizer and a point-and-click method of
configuring various I/O. The application organization is based on using tasks, programs, and
routine structures. In addition, it features sophisticated data handling and incorporates both
arrays and structures to provide maximum flexibility and emulation of real world control
applications. PLCLogix also includes a free-form ladder editor that allows you to modify multiple
rungs of logic at the same time. The point-and-click graphical interface provides a simple,
intuitive method of entering and editing ladder logic programs.

The PLCLogix Graphic User Interface (GUI) displays the interactive animation as well as the
ladder logic, controller organizer, I/O chassis, and a range of control panels. The ladder logic
display is the same format as Logix 5000. The controller organizer also follows the same
convention as Logix 5000 to provide a seamless transition from PLCLogix simulation to the real-
world Logix 5000 control.

1-2 Graphic User Interface (GUI).

The Graphic User Interface for PLCLogix is designed to emulate RSLogix 5000, with the main
difference being the addition of a virtual I/O chassis and a range of 3D simulation worlds. The
purpose of the GUI is to provide a range of information displayed on a single screen. This
information ranges from bit display to program code to status indicators. The Bit Status is
represent by green horizontal bars on either side of the I/O device. The bar on the left is
referred to as the rung-condition-in and the bar on the right is the rung-condition-out. When the
green bars are illuminated, it indicates a high bit (1) is present in the I/O memory location. If the
I/O point is not green, it means that a low bit (0) is present at that address.

Figure 1-2 shows the main components for the PLCLogix GUI. The Menu Bar provides access
to a variety of Windows-based functions including Help, Search, and I/O Worlds. The Windows
Commands Toolbar contains common Windows-based instructions such as New, Open, Save,
Print, Cut, Copy, etc. The Ladder Instruction Toolbar provides category tabs which contain a
wide range of instructions in various subsets, or categories. Instructions are inserted into ladder
programs by clicking on instructions in the various categories.

5

FIGURE 1-2 PLCLogix GUI.

The Online Bar places the PLC online (Run) or offline (Program). When the PLC is Offline,
program edits can be made. When switched to Online, the program is downloaded, and the
PLC is in the Run mode. The Standard Toolbar consists of typical edit functions, such as cut,
copy, paste that are used repeatedly during the development and debugging of ladder logic
programs. The Ladder Element Toolbar features both common editing functions as well as
more specialized edit capabilities. The Controller Organizer is a graphical representation of the
contents of your controller project. The Status Bar provides prompts during software operation
as well as on-going status information updates. The View Panel is the window which contains
the ladder logic diagram and various editors, such as Tag Editors.

6

1-3 Controller Organizer

The PLCLogix controller organizer is based on the same format as the RSLogix 5000 controller
organizer, and displays tasks, programs, and structures in a tree-like format, similar to Windows
Explorer. The controller organizer is a graphical representation of the contents of a project, and
makes it easy to see all related information about programs, data and I/O configurations, and to
navigate through programs, routines, and tasks. Figure 1-3 shows an example of the PLCLogix
Controller Organizer. The main folders in the Controller Organizer tree are: Controller Project
Name, Tasks, Motion Groups, Add-On Instructions, Data Types, Trends, and I/O Configuration.

FIGURE 1-3 Controller Organizer

Earlier versions of PLC control software, such as the RSLogix 500, would have a main program
and subprogram(s) that would control an application. RSLogix 5000 and PLCLogix have
controller organizational models that allow for multiple applications, and each application is
known as a project. A project holds all of the elements that are contained in an application,
including tasks, programs, and routines.

Tasks are an important part of a controller organizer, and provide scheduling and priority
information for one or more programs that are executed based on specific criteria. A task is
basically a scheduling mechanism used for executing programs. A PLCLogix project can have
multiple tasks, and each task can be triggered (executed) continuously, periodically, or when an
event occurs. Figure 1-4 shows the various types of tasks that can be executed: Continuous,
Periodic, and Event.

7

FIGURE 1-4 Task Execution Types

A Continuous Task is self-triggered and automatically repeats. It runs constantly in the
background, and when it completes a full scan it immediately restarts. For most applications the
continuous task will hold the PLC user-created program. Only one task can be executed at a
time so continuous tasks will be executed whenever other tasks are not triggered. When a new
project is initiated, a continuous task is created by default. A program does not require a
continuous task, and there can be only one continuous task, regardless of number of tasks.

Periodic tasks operate at specific pre-determined intervals and contain program commands that
need to be executed on a timed basis. A periodic task performs a function at a specific rate.
The time period can be adjusted from 1 ms to 2000 s. Periodic tasks can be assigned a priority
level with high priority tasks interrupting lower-priority tasks. Event-driven tasks will execute
when a specified event takes place. Tasks in the Logix5000 controller are executed by priority.
Continuous tasks have the lowest priority, which is fixed. Periodic and Event-driven tasks have
adjustable priority levels. Event-driven tasks are generally used for Axis- and motion-control
applications.

Tasks are divided into one or more programs, and each task can operate up to 100 of these
programs. Once a task is executed, every program assigned to the task will be triggered in the
order they are stored in the controller’s memory. A program is basically a set of related tags
and routines. Each program consists of tags, a main executable routine and other routines,
such as a fault routine. A routine is a set of logic instructions written in a PLC language, such
as ladder logic.

8

1-4 I/O Chassis

The PLCLogix I/O chassis shown in Figure 1-5 contains discrete input and output modules as
well as BCD and Analog input and output devices. There are two 16-point discrete inputs and
two 16-point discrete outputs. There are five different input switch types: NO switch, NC
pusbutton, NO pushbutton, NO limit switch, and NC limit switch. The discrete output simulators
use green LED lights to indicate when an output is ON or OFF. The BCD input and output
modules are designed to simulate a range of decimal input and output values. The 4 BCD
thumbwheels connected to the BCD input module allows for decimal values of 0000 to 9999 to
be entered. The output value is displayed using four 7-segment displays to indicate a decimal
range from 0000 to 9999.

FIGURE 1-5 PLCLogix I/O Chassis

Each of the simulated discrete input devices are selectable among five different types of devices
by right-clicking on the device with your mouse. The five settings available are normally closed
(NC) pushbutton, normally open (NO) pushbutton, NO switch, NO limit switch, and NC limit
switch.

9

The Analog I/O interface in the PLCLogix chassis provides a four-channel analog input and a
four channel analog output. The analog input signals simulated are voltage, current, resistance,
and temperature. Each of the four channels has a default setting of one of these signals. The
channels can be further customized by changing the values in the parameter settings window.
The analog input and output displays also include a decimal point and linear adjustment for
setting precise analog input values ranging from 000.0 to 999.9. Figure 1-6 shows the various
parameter settings for the analog I/O modules in the PLCLogix I/O Chassis.

FIGURE 1-6 Analog I/O Module Properties.

10

Chapter 2: Tags and Aliases

2-1 Introduction to Tags

Logix 5000 and PLCLogix controllers define memory by using variable names, also known as
tags and aliases. Tag-based memory structures are the newest type of memory addressing
used by PLCs. A tag is simply another name for a memory location with an assigned data type.
For example, Start_PB1 could be a tag name assigned to a start button, instead of something
less user-friendly, such as I:1/05.

When a tag is created, it must be given a data type. A data type is a definition of the size and
layout of memory allocated for the created tag. Data types define how many bits, bytes, or
words of data that will be used by a tag. There are two main data types: basic and structured.
Figure 2-1 shows the data types that are considered to be basic, or atomic. These include
Boolean (BOOL), Short Integer (SINT), Integer (INT), Double Integer (DINT) and real numbers
(REAL). RSLogix 5000 data structures include timers, counters, arrays, messages, and PID.
PLCLogix has 32-bit memory locations, which means that a tag will always reserve 32 bits of
memory, regardless of whether the data is Boolean or integer. The memory bits shown in
Figure 2-1 indicate 32-bits for each memory type, even though some use less (e.g. Bool only
uses one bit) only use one bit.

Figure 2-1 Data Types

A tag can also be defined as a compound set of the data types such as a structure or an array.
Unlike other PLCs, Logix 5000 and PLCLogix processors do not use indexed or direct
addressing. Instead, they use arrays. An array is a type of tag that contains a block of data,
and is similar to a data table. Arrays are numerically sequenced tags of the same data type that
occupy a contiguous memory location.

11

An array is basically a table of tags, and is capable of holding the values of multiple tags. It is,
essentially, a type of tag that consists of a block of multiple pieces of data. Each individual
piece of data in the array is called an element. Each element in an array must be of the same
type. An array tag holds each element in its assigned order in a contiguous block of the
controller’s memory. Arrays are useful for indexing applications, when the elements are
required to be stepped through (indexed). Arrays can be created in 1, 2, or 3 dimensions.
Figure 2-2 shows an example of a 1-dimensional array which holds 5 different values of
pressure ranging from 100 to 140.

FIGURE 2-2 One-dimensional array.

PLCLogix also has a User Defined Data Table (UDT), or structure, which allows users to setup
their own specific data structure for customized applications. Structures are capable of holding
multiple types of data and include a description of each member. Structures enable you to
assign both a name and description for each member within a user defined data type. The
member name is used to access the associated data, and the member description helps to
define the purpose of the member. By adding a description to a tag, it is possible to store
another 120 characters of information.

Earlier Allen Bradley PLCs programmed with RSLogix 5 and RSLogix 500 software had memory
locations where I/O and other internal values were stored, and these different data files could
only hold one data type. These PLCs require very specific addressing to indicate I/O addresses,
timers, counters, bits, variables, etc. Logix 5000 programming software has eliminated the use
of data files and in its place is the tag database. The tag database organizes memory locations
in one area, and each tag is assigned its own data type and radix.

12

2-2 Alias Tags

Another type of tag in Logix5000 controllers is an alias tag, which is an identifier for all or part of
another tag in the application. Alias tags mirror the base tag to which they refer. In other words,
an alias tag is a tag that represents another tag. When the base tag value changes, so does the
alias tag. Alias tags allow a user to write a program with tag names assigned to physical I/O
points. So, once the system design is complete all that is needed is the mapping of the
appropriate tags. Unlike a base tag, an alias tag does not have a defined data-type because it
simply assumes the data-type of the tag that it refers to. Aliases are commonly used to assign a
descriptive name to an I/O device, or to simplify a name of a complex tag. During the download
process, PLCLogix converts program references for alias tags to the physical memory used by
the data that the aliases point to. The main benefit of the alias tag is that it allows you to create
a new name for a piece of data.

A summary of the tags used in a given program is stored in a tag list. PLCLogix can access the
tag list, online in the controller or offline in the software file, and make the tag list available to
other software packages (e.g. Excel). With RSLogix 5000, once the software has been
configured for the chosen controller, input and output variables are defined in the tag list to
establish the link between hardware and software. In PLCLogix, the software is preconfigured
and the controller link is already established. The data editors in both systems allow for the
creation of a tag by assigning a tag name and defining the data type. The minimum memory
allocation for a tag is 4 bytes, or 32 bits. An additional 40 bytes are required for each tag name.
Since PLCLogix and ControlLogix are 32-bit controllers, a tag always reserves 32 bits of
memory even if it is a Boolean or integer data type.

Each tag is stored individually in the processor, which allows for new tags to be created while
the controller is on-line and in the Run mode. Because tags are independent of PLC I/O points
in ControlLogix and PLCLogix, it is possible to write a program before any PLC I/O points have
even been decided or configured. This allows the PLC programmer to create data within the
controller that is structured to suit the needs of the application. Unlike older-model PLCs, where
the user has access to a fixed set of either registers or bits, the ControlLogix and PLCLogix
processors treat memory much more dynamically. Its versatility allows the user to choose their
own names, data types, complex structures, and even arrays - much like how computer
programmers might expect to treat memory.

13

2-3 Creating Tags

There are several methods available for creating tags – they can be created one at a time as
you write the program, or they can be created in the tag editor shown in Figure -3. The tag
editor contains a spreadsheet-like view of the tags where the tags can be created and edited.
When an instruction is first used a “?” will indicated the need for a tag. There are three simple
ways to create a tag using the “?” symbol. One method is to either right click or double click on
the “?” and select an existing tag from the drop down box. Another method is to double click on
the “?” and type in a tag name. If the name does not yet exist, right click on the tag name and
select “Create New Tag Name”. A tag can also be created by clicking on the tag name and
drag and drop an existing tag to a new instruction. Using any of these methods, PLCLogix will
automatically assign the correct data type according to the instruction selected.

 FIGURE 2-3 Tag editor.

The tag data type indicates the data format used by the tag, such as an integer, Bool, REAL,
Timer, Counter, control, etc. Figure 2-4 shows the tag types used in PLCLogix and RSLogix
Controllers. A Base tag is generally selected to hold data from logic-based operations using
bits, integer numbers and real (floating point) numbers. Produced tags and Consumed tags are
mainly used in the transfer of data between two or more controllers.

 FIGURE 2-4 Tag Types.

14

Chapter 3: Instruction Set

3-1 Introduction

PLCLogix features an extensive instruction set of over 70 commands. These instructions
encompass all of the main ladder logic programming commands associated with Logix 5000.
The PLCLogix Instruction Set consists of the following groups of commands: Bit Instructions,
Timer and Counter Instructions, Program Control, Compare, Communications, Math, and Data
Handling/Transfer instructions.

3-2 Bit Instructions
Instruction
Mnemonic

Instruction
Name

Symbol Description

XIC Examine If
Closed

Examines a bit for an On (set, high)
condition.

XIO Examine If
Open

Examines a bit for an Off (cleared, low)
condition.

OTE Output
Energize

When rung conditions are true, the OTE
will either set or clear the data bit.

OTL Output Latch

When enabled, the instruction signals to
the controller to turn on the addressed
bit. The bit remains on, regardless of the
rung condition.

OTU Output
Unlatch

When enabled, it clears (unlatches) the
data bit. The bit remains Off, regardless
of rung condition.

ONS One Shot

Enable/disable outputs for one scan.
Storage bit status determines whether
this instruction enables or disables the
rest of the rung.

OSR One Shot
Rising

A retentive input instruction that triggers
an event to occur once. It either sets or
clears the output bit, depending on the
storage bit status.

OSF One Shot
Falling

This instruction either sets or clears the
output bit, depending on the storage bit’s
status.

15

3-3 Timer and Counter Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

TON Timer ON
Delay

A non-retentive timer that accumulates time when
the instruction is enabled. The accumulated
value is reset when rung conditions go false.

TOF Timer Off
Delay

A non-retentive timer that accumulates time when
the rung makes a true-to-false transition.

RTO Retentive
Timer On

A retentive timer that accumulates time when the
instruction is enabled. Retains its accumulated
value when rung conditions become false.

CTU Count Up

An instruction that counts false-to-true rung
transitions. It counts upward and the
accumulated value is incremented by one count
on each of these transitions.

CTD Count Down

This instruction counts downward on each false-
to-true rung transition. The accumulated value is
decremented by one count on each of these
transitions.

RES Reset

This instruction is used to reset a timer, counter
or control structure. The accumulated value of
these instructions are cleared when the RES
instruction is enabled.

16

3-4 Program Control Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

JSR Jump to
Subroutine

This instruction jumps execution to a
specific routine and initiates the execution
of this routine, called a subroutine.

SBR Subroutine

Stores recurring sections of program logic.

RET Return

Used to return to the instruction following
the a JSR operation.

JMP Jump to
Label

Skips sections of ladder logic.

LBL Label

Target of the JMP instruction with the same
label name.

MCR Master
Cont. Res.

Used in pairs to create a program zone that
can disable all rungs between the MCR
instructions.

NOP No
Operation

This instruction functions as a placeholder.

END End

End rung in ladder logic circuit.

AFI Always
False
Instruction

Sets the rung condition to False.

17

3-5 Compare Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

EQU Equal

This instruction is used to test whether two
values are equal. If Source A is equal to
Source B, the instruction is logically true.

GEQ Greater Than
or Equal To

Determines whether source A is greater than
or equal to Source B. If the value at Source A
is greater than or equal to the value at Source
B, then the instruction is true.

GRT Greater Than

This instruction is used to test whether one
value (Source A) is greater than another value
(Source B).

LEQ Less Than or
Equal To

Determines whether one value (Source A) is
less than or equal to another (Source B).

LES Less Than

This instruction determines whether Source A
is less than Source B.

LIM Limit

This instruction is used to test for values
within the range of the Low Limit to the High
Limit.

MEQ Mask Equal To

Passes the Source and Compare values
through a Mask and compares the results.

NEQ Not Equal To

This instruction tests whether Source A is not
equal to Source B.

18

3-6 Math Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

ADD Add

Adds Source A to Source B and stores the result in
the Destination.

SUB Subtract

Subtracts Source B from Source A and places the
result in the Destination.

MUL Multiply

Multiplies Source A by Source B and stores the result
in the destination.

DIV Divide

Divides Source A by Source B and places the result
in the Destination.

MOD Modulo

Divides Source A by Source B and stores the
remainder in the Destination.

SQR Square Root

Calculates the square root of the source and places
the float result in the Destination.

NEG Negate

Changes the sign (+, -) of the Source and stores the
result in the Destination.

ABS Absolute
Value

Takes the absolute value of the Source and places
the result in the Destination.

19

3-7 Advanced Math Instructions
Instruction
Mnemonic

Instruction
Name

Symbol Description

SIN Sine

Takes the sine of the Source value (in radians} and
places the result in the Destination.

COS Cosine

Takes the cosine of the Source value (in radians)
and places the result in the Destination.

TAN Tangent

Takes the tangent of the Source value (in radians)
and stores the result in the Destination.

ASN Arc Sine

Takes the arc sine of the Source value and places
the result in the Destination (in radians).

ACS Arc Cosine

Takes the arc cosine of the Source value and
stores the result in the Destination (in radians).

ATN Arc Tangent

Takes the arc tangent of the Source value and
stores the result in the Destination (in radians).

LN Natural Log

Takes the natural log of the Source value and
stores the result in the Destination.

LOG Log to the Base
10

Takes the log base 10 of the Source value and
stores the result in the Destination.

XPY X to the power
of Y

Takes Source A (X) to the power of Source B (Y)
and stores the result in the Destination.

20

3-8 Data Handling/Transfer Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

TOD Convert to
BCD

This instruction converts a decimal value to a
BCD value and stores the result in the
Destination.

FRD Convert to
Integer

Converts a BCD value (Source) to a decimal
value and stores the result in the Destination.

MOV Move

Copies the Source (which remains unchanged)
to the Destination.

MVM Masked Move

Copies the Source to a Destination and allows
segments of the data to be masked.

DEG Degrees

Converts the Source (in radians) to degrees and
places the result in the Destination.

RAD Radians

Converts the Source (in degrees) to radians and
stores the result in the Destination.

XOR Bitwise
Exclusive OR

Performs a bitwise XOR operation using the bits
in Source A and Source B and stores the result
in the Destination.

CLR Clear

Clears all the bits of the Destination

SWPB Swap Byte

Rearranges the bytes stored in a tag.

21

3-9 Array/Shift Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

BSL Bit Shift Left

Shifts the specified bits within the Array
(DINT) one position left.

BSR Bit Shift
Right

Shifts the specified bits within the Array
one position right.

FFL FIFO Load

Copies the Source Value into a FIFO
queue on successive false-to-true
transitions.

FFU FIFO Unload

Unloads the Source value from the first
position of the FIFO and stores that value
in the Destination..

LFL LIFO Load

Copies the Source value to the LIFO.

LFU LIFO Unload

Unloads the value at .POS of the LIFO
and stores 0 in that location.

22

3-10 Sequencer Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

SQI Sequencer
Input

Detects when a step is complete in a
sequence pair of SQO/SQI instructions.

SQO Sequencer
Output

Sets output conditions for the next step of
sequence pair of SQO/SQI instructions.

SQL Sequencer
Load

Loads reference conditions into a
sequencer array.

SQC Seq. Compare

RSLogix 500 instruction. Supported by
PLCLogix.

3-11 Communication Instructions

Instruction
Mnemonic

Instruction
Name

Symbol Description

GSV Get System
Data

Gets controller system data that is stored
in objects.

SSV Set System
Data

Sets controller system data that is stored
in objects.

23

Chapter 4: Tutorials

4-1 PLCLogix I/O Chassis

These tutorial exercises are designed to familiarize you with the operation of PLCLogix PLC
simulation software and to step you through the process of creating, editing and testing simple
PLC programs utilizing the Ladder Logic Instructions supported by PLCLogix.

From the Main Toolbar at the top of the screen, Click on the I/O Chassis tab and select I/O
Rack. The simulator screen shown below should now be in view. For this exercise we will be
using the Discrete I/O Interface section, which consists of 32 switches and 32 lights. Two
groups of 16 toggle switches are shown connected to 2 Input cards of our simulated PLC.
Likewise two groups of 16 Lights are connected to two output cards of our PLC. The two input
cards are addressed as “Slot 1” and “Slot 3” while the output cards are addressed “Slot 2” and
“Slot 4”.

24

Use your mouse and right click on the various switches and note that the type of switch being
used can be changed with each click. There are five possible switches that can be used as a
discrete input device: normally open pushbutton, single pole switch, normally open limit switch,
normally closed pushbutton, and normally closed limit switch. The color of the light connected
to the discrete output device module can be changed by right clicking with your mouse on one
of the lights and selecting from one of three colors” red, green, or yellow. Close the I/O rack by
clicking on the red X in the upper right corner of the I/O rack window.

4-2 Tags and Aliases Tutorial

Create a new file by selecting File, New from the Main Toolbar. A window should now appear
titled “New Controller”. Enter a name for the new controller (i.e. Tutorial 2) and click OK. the
Controller Organizer should now appear on the left-side of the screen.

To enter tags and aliases, follow the steps below:

1. Right click on the Controller Tags folder in the Controller Organizer and select Edit Tags. The
Tag Editor appears, as shown below. The Editor displays the I/O modules (Data Type) and the
descriptions for the tag. These descriptions are currently blank since no tag information has
been assigned.

2. To create a Base Tag, enter the tag data type.

3. To create an Alias Tag, enter the tag which the new tag refers to.

25

Another method to create a new tag is to use the New Tag dialog function, as shown below.
The New Tag dialog is accessed from the File tab on the main toolbar and by selecting New
Component - Tag. Using this method, the Data Type selected will automatically select a default
Style. You can also manually choose the Style in which you want to display the value of the tag
(Hex, Binary, or Octal).

4-3 Ladder Logic Tutorial

Follow these steps to enter the ladder logic you will use to define your programs and routines.

1. Create a new File (File, New) assign a name and click OK.

2. Left click on the “+” in the box beside Main Program in the Controller Organizer.

3. Left double-click on the “Main Routine” displayed in the Controller Organizer. The ladder
logic window should now be displayed as shown below.

26

4. From the Ladder Instruction toolbar, click on the tab corresponding to the instruction group
from which you want to add an instruction.

5. Select the desired instruction and the instruction is added to the rung or branch on which you
chose to put it.

6. Modify the instruction as necessary. Use the Tag Browser to choose a tag.

7. Use the Ladder Instruction toolbar to add additional rungs, branches, branch levels, or
instructions as required by your routine.

8. Make the necessary modifications to your rung.

9. Right mouse click and choose “Accept Pending Rung Edit”.

27

4-4 Branching Tutorial

 Add a branch. This icon on the instruction toolbar is used to insert a branch in a ladder
logic program. If the cursor is on an instruction, the branch is placed immediately to the right of
the instruction. If the cursor is on the rung number, the branch is placed first on the rung.

 Move a branch level. In order to move a branch level to another location, click on the
upper left corner of the branch.

 Expand a branch. Click the right leg of the branch, and then drag the leg to the right
or left.

 Nest a branch. To place another branch structure within the original branch structure,
place the cursor at the upper left corner of a branch leg and click on the Add Branch button.

 Parallel branch. Place the cursor at the bottom left corner of a branch leg and click on
the Add Branch Level button.

 Copy branch level. Select the branch level you want to copy by clicking on the left
edge and then click Copy Branch Level from the right mouse click menu. Then, click on a rung
or instruction in the ladder logic program and click Paste from the right mouse click menu.

